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The Berry phase in a T s z 2  Jahn-Teller system, 
with a note on tunnelling 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 7 November 1988, in final form 3 February 1989 

Abstract. The phase of the wavefunction on the lowest adiabatic potential energy surface 
of a T 8 ~2 Jahn-Teller system is studied, and a mapping for the lowest energy states is 
proposed. Methods of calculating the tunnelling splitting at strong coupling are discussed, 
and tested by application to a soluble one-dimensional equation. 

1. Apologia and introduction 

This paper, in which the appendix nearly outweighs the main body, started out as 
an investigation of the phase changes on the lowest adiabatic potential energy surface 
(APES) of the T 6 ~2~ Jahn-Teller system. The main reason for starting this work was 
that I had never really understood how to write down wavefunctions for the lowest 
states in this system and work out their energies in the adiabatic approximation. When 
I reached the point of calculating the tunnelling splitting I realised that there was a 
choice of approximations to be used, and that they could be tested against numerical 
results in the simpler case shown in equation (A2). The analytical derivation of the 
tunnelling energy for this equation, and the results of the numerical test are put into 
an appendix because they refer to a different system from the main paper. As the main 
paper and the appendix do refer to each other, I hope readers will find it helpful to 
have them published together. 

The T 8 52g Jahn-Teller system, in which an electronic triplet interacts linearly with 
a triplet of vibrational modes in cubic symmetry, has a long history (see e.g. Englman 
1972). It has always been awkward to handle, partly because it is one of the few 
complicated Jahn-Teller systems that does not have an accidentally high symmetry. 
The method used in this new look at the lowest states at strong coupling derives from 
Ham (1987) who has re-analysed the adiabatic approximation for the E @ e  Jahn-Teller 
system in the light of Berry’s discussion (Berry 1984) of phase changes in such systems. 
I t  should be emphasised that the use of an adiabatic approximation in Jahn-Teller 
systems is not new, and the importance of understanding the phase was well understood 
from early on, particularly in E 6 e (Longuet-Higgins et a1 1958), but so far the phases 
in T 6 ~2~ have not been analysed in such detail. 

We start in 52 of the paper by looking at the Schrodinger equation for T 8 t2g, and 
describing the lowest APES. The electronic basis is assumed to be real, and so turns out 
not to be single-valued when taken around certain closed circuits in the phase space of 
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the normal coordinates. The phase changes discussed by Berry (1984) are fixed by the 
requirement that the wavefunctions should be made single-valued, which can be done 
in this case by multiplying them by a complex phase factor. This is done in 43 and an 
effective vector potential is derived. In fact 93 is not used in the rest of the paper, but 
is there simply to show that the Berry phase can be properly defined and represented 
in a way that is comparable to other applications. 

The origin of the phase changes in Jahn-Teller systems is in the use of what has 
been called the extended Born-Oppenheimer approximation, where the electronic basis 
changes continuously as the representative point moves in the normal mode coordinate 
space, and this is described in 94. This is the approximation that has always been 
used for E 8 F, but for T 8 5zg at strong coupling it has been more usual to use an 
ordinary Born-Oppenheimer approximation, where the fixed electronic wavefunction is 
only correct in the neighbourhood of each minimum (Judd 1974, Bersuker and Polinger 
1989, equation (3.84)). Thus the analysis of phases in $2 is new. 

In 95 a mapping of the phase space is described that takes care of the sign 
changes while keeping the electronic wavefunction real, and this mapping is used to 
set up ground-state wavefunctions and discuss their energies, and in particular their 
tunnelling splittings. A number of different calculations of tunnelling splittings are 
summarised by Bersuker and Polinger (1989, 83.3.3). The result (5.8) given here is 
produced by a similar method to their (3.100), except that their use of the ordinary 
Born-Oppenheimer approximation probably leads to a different prefactor. As this type 
of calculation is flawed by the choice of inadequate basis functions, it is not worth 
looking more carefully at these differences. Instead we have looked, in the appendix, at 
an alternative way of using the WKB approximation to give the tunnelling splitting. The 
results for an equation in a single variable seem to agree with numerical calculations 
fairly well, and we accordingly suggest that a similar method could be adopted for 
T €3 ‘12~. A WKB method has been used by Bersuker and Polinger (1989) and Polinger 
(1974) with slightly different results from ours. 

2. The adiabatic potential energy surface 

The Schrodinger equation of an electronic triplet in cubic symmetry, linearly coupled 
to a ‘ 1 2 ~  triplet of vibrational modes can be written 

- i V 2 y +  i ( X 2 +  Y 2 + Z 2 ) ~ + K  -Z 0 -X y = Ev (2.1) (-: 1; -oy) 

where X ,  Y ,  Z are the three normal coordinates of the vibration, V2 is the kinetic energy 
operator in ( X ,  Y , Z )  space, the basis for the matrix is the set of three components of 
the electronic triplet, and the units of energy are hw. The matrix can be diagonalised 
for any particular choice of X ,  Y , Z ,  and its eigenvalues can be found as the roots of 
the cubic equation 

A 3 - A K 2 R 2 - 2 K 3 X Y Z  = O  (2.2) 

where 

R2 = X 2 +  Y 2 + Z 2 .  (2.3) 



The Berry phase in a T €3 ~2 Jahn-Teller system 1781 

Figure 1. A projection of the lowest APES onto a sphere, with minima and points of 
degeneracy marked. The contours show the potential energy. The arrows show a path 
round a minimum and one round a degeneracy. 

If we work in terms of the direction cosines, x = X / R ,  y = Y / R ,  z = Z / R ,  we can 
write 

A = K R i , ( x , y , z )  (2.4) 

and the total effective potential energy for the vibronic states is thus 

V ( X ,  Y , Z )  = i R 2  + KRi . ( x , y , z ) .  (2 .5)  

The three values of V (corresponding to the three roots A) constitute a set of three 
adiabatic potential energy surfaces (APES), which here are three-dimensional surfaces in 
the four-dimensional X ,  Y ,  Z ,  E space. Motion on one of these surfaces can be treated 
by the extended Born-Oppenheimer approximation, as long as the surface remains well 
separated in energy from the others. 

The lowest APES must correspond to the lowest value of /L (which is negative), 
and for a given 1. equation (2.5) shows that V has a minimum value of - (Ki)2 /2  at 
R = - K i . ;  thus the minima on the lowest APES correspond to the minimum values of 
i.. By solving equation (2 .2 )  we find there are four equivalent minima at the points 
with direction cosines 

and these are also the points where the lowest APES is furthest in energy from the 
others. On the other hand this surface actually meets the next one up along the four 
directions 

1 1 1 1 
-(-1,-l,-l) - ( - l , + l , + l )  -(+1,-1,+1) -(+1,+1,-1,), (2.7) v5 J3 A A 
Consequently the extended Born-Oppenheimer approximation can only be used at 
energies that are well below the energy at these points of degeneracy. Our lowest- 
energy APES can thus be mapped onto a sphere from which the regions surrounding 
the points (2.7) have been removed (figure 1). 
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The presence of degeneracies with closed paths round them on an APES leads us to 
expect a phase change along such a path, or, equivalently, a lack of single-valuedness 
of a real electronic wavefunction. To investigate this we need the electronic basis, and 
though this is difficult to find in a general direction it can be found in enough special 
directions for this purpose. The fact that this ba& is independent of R means that we 
only need to worry about paths on the mapping sphere. Consider first the case 

z = O  x=cosO y = s i n 8  (2.8) 

and solve 

0 -sin8 
-i. -cos 8 )  (!) = 0. 

-sin8 -cos8 -i. 
(2.9) 

From (2.2) we see that i- = O,kl,  and choosing for the lowest energy E. = -1 we find 
the normalised basis vector to be $(sin 8, cos 8 , l )  if it is assumed to be real. Noting 
that as goes from zero to 271 the point on the spherical surface goes positively from 
(1,0,0) to (l,O,O), we can write down equivalent basis vectors for circuits round the x 
and y axes. 

While sticking to arcs of these great circles it is possible to construct closed curves 
that surround any given number of degeneracies. For instance, we start with the circuit 

(1,050) + (0, L O )  + (O,O, 1) -+ (L0,O). (2.10) 

This surrounds the minimum at L ( l , l ,  l), but no degeneracies. It consists of positive 
arcs of these great circles, each going from zero to 71/2, and the associated basis vectors 
are 

.ij 

1 1 1 1 
-(O, 1, l )  + -(l,O, 1) --t -(l, 1,O) + -(O, 1,l). J5 Jz Jz Jz (2.1 1) 

The wavefunction is thus real and single-valued on this circuit. Compare this result 
with a circuit round the degeneracy at &(l,  1,-I): 

(-l,O,O) + (0, 1,O) + (O,O, 1) + (-l,O,O). (2.12) 

The basis changes for this circuit are 

1 1 1 1 -(O,-1, 1) --* -(l,O, 1) + -(l, 1,-0) + -(O, 1,-1). Jz 4 Jz J5 (2.13) 

In the course of this circuit the real wavefunction has changed sign. It is easy to show 
that the same change of sign occurs for a circuit enclosing any one of the degeneracies, 
while on a circuit enclosing two of them, such as one of the great circles, no sign 
change occurs. 

3. The Berry phase on the lowest APES 

The constraint put on the basis vectors in the previous section was that they should 
be real, and that they should be continuous along any path not crossing a degeneracy. 
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This resulted in a lack of single-valuedness of the wavefunction which has to be 
removed before the Berry phase is calculated. A real wavefunction can always be 
made single-valued by multiplying it by a complex phase factor, which still preserves 
continuity by itself varying continuously along any allowed path on the APES. There 
are a variety of ways this can be done, and the following scheme is one possibility for 
this system. 

Starting at the z point (O,O, 1 )  with the real basis vector & ( l ,  l,O), allow the 
wavefunction to remain real round the great circle y = 0, but introduce a phase factor 
exp(i8), where 8 is the angular separation from z ,  along the great circle x = 0, so that 
the phase varies from zero to 71 along z + -y + -z as well as along z + y + -z. 
Finally introduce a phase factor exp(i4) along the z = 0 great circle, where 4 is the 
angular separation from x, so that the phase increases steadily from zero to 271 along 
x + y + -x + -y + x. At every other point on the sphere, except at the degeneracies 
(2.7), the phase must be continuous with the phases specified here. With these phase 
factors giving a single-valued wavefunction the Berry phase change round any closed 
path can be calculated, and it is of course an odd or even multiple of 7c according to 
whether the real wavefunction changed sign on such a path. 

Another way of representing the phase that has been used in the past (Aitchison 
1988) is by the construction of an effective vector potential, A , chosen in such a way 
that the Berry phase, y(c)  is given by 

y(c) = $ A  . ds. 
c 

This vector potential is also given by A = i(u1Vu) where U is the single-valued wave- 
function in the previous paragraph and used again in 54. The vector potential that has 
been used for this purpose previously is the one for a monopole: 

1 
A ( - k )  ___ ( -y ,  X, 0). 

r ( z  + r )  

This A is labelled with the unit vector -k to indicate that it is singular along the 
negative z direction. Away from singularities it satisfies 

r 
r3 

V X A = -  

which is the correct field for a monopole, and also 

f A . d s  = 471 

(3.3) 

(3.4) 

if the path of the integral closely encircles the negative z axis. Thus if we take unit 
vectors along the four directions (2.7) to be et, e2, e3, e4 we can define 

This field has the correct value for 4 A . ds around a line of degeneracies, and the fact 
that it satisfies V x A = 0 everywhere else ensures that $ A  .ds  = 0 for every other 
closed loop. 
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These two ways of expressing the phase are topologically equivalent, and share the 
disadvantage, which is made very obvious in ( 3 3 ,  that the original cubic symmetry of 
the Hamiltonian has been lost. 

4. Using the extended Born-Oppenheimer approximation 

The Born-Oppenheimer approximation for molecular motion assumes that the heavy 
nuclei move in an effective potential energy that results from solving for the electronic 
energy with the nuclei instantaneously at rest. It is assumed that the electronic wave 
function changes continuously with the nuclear motion, but for most applications this 
underlying change can be ignored because the mass ratio M / m  is so large (Schiff 
1955). Such a process would give the elastic restoring force that appears in (2.1) as 
i ( X 2  + Y 2  + Z 2 ) .  In the case of Jahn-Teller systems we extend the approximation by 
allowing for the existence of several electronic states whose mixing as the nuclei move 
must be explicitly allowed for because of their degeneracy. Such electronic states are 
the triplet basis for (2.1). 

We proceed to apply this method to (2. I), starting by writing 

y) = 4 ( X ,  Y ,  Z)U(X, Y ,  z, r )  (4.1) 

where r represents all the electronic coordinates, and the wavefunction U is what we 
have called the ‘electronic basis’ that diagonalises the 3 x 3 matrix. Accordingly the 
Schrodinger equation becomes 

- f [uV’q!~ + 2V4 * VU + 4V2u] + iR2q5u + K I R &  = E 4 u  (4.2) 

where V is still the normal coordinate momentum operator, and E. is the appropriate 
root of the matrix as in (2.4). Applying closure with U to this equation gives 

- i V 2 $  - Vc$. (uIVU) - i$(ulV2u) + ( i R 2  + KAR)4 = E#.  (4.3) 

In the usual Born-Oppenheimer approximation the terms in Vu and V2u vanish because 
M / m  is large, and the remaining equation does not depend on U ;  however, for Jahn- 
Teller systems the dependence of U on ( X ,  Y ,  2)  cannot be neglected. 

The solutions to the equation equivalent to (4.3) for E @I E Jahn-Teller systems 
have been discussed in detail most recently by Ham (1987). In this case the matrix 
to be diagonalised is only 2 x 2 so the function U can be found explicitly, as can Vu 
and V2u. Coordinate space for the normal modes is two-dimensional, so the APES is a 
surface in three-dimensional space. The surfaces are well separated except at the origin 
of coordinates, so paths on the lowest APES differ according as they do or do not 
enclose the origin. If  U is kept real, then a path round the origin changes the sign of U, 
while if U is kept single-valued a Berry phase change of 71 appears along such a path. 
Ham shows that these two different choices of U give rise to two different equations 
like (4.3), but they also necessitate different boundary conditions on 4 so that finally 
the same set of energy levels appears. Specifically, if U is kept real but changes sign on 
one rotation, then $(R,  6) = +(R, 6 + 277) where 6 is the polar angle, while with the 
single-valued U we have 4(R,6)  = 4(R,6 + 2 n ) .  Ham also shows that if U had been real 
and single-valued the pattern of energy levels would have been distinctively different, 
as in the case of hindered rotation of the C2H6 molecule. 
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Comparison with E @ E suggests how to procede in T @ 52 . We have the choice of 
using a complex U with a single-valued 4, or of using a real U with a multiple-valued 
4, which can be thought of as existing in an extended space (the analogue of 0 - 411 in 
place of 0 - 27~). As was shown in the last section the complex U option loses some of 
the symmetry, so we shall opt for working with real U and extended space. This option 
enables us to simplify (4.3) a little, since if U is real, then orthogonality requires that 
(ulVu) is zero. The term in (uIV2u) is more difficult because we do not have an explicit 
expression for U, unlike in the E @ E case, but the fact that U contains only angular 
parameters, being independent of R , means that 

1 
R2 

(uIV2u) = - x factor of order 1. (4.4) 

Even though this factor cannot be calculated everywhere, it can be handled by sym- 
metry, and by using perturbation theory we find that (ulV2u) = -1/6R2 along the 
directions of the minima (2.6), and (ulV2u) = -1/R2 on any cube axis. 

The validity of the approximation can be assessed by calculating the magnitude of 
corrections to it. For a complete set of states in which to solve (2.1) we can start with 
(4.1) but must also include two more similar states corresponding to the other roots 
of, say, the matrix: 

The coupling terms between the different APES can be found by performing closure 
on (4.2) with ~ 1 , 2  producing a term (41,21V4) . (u1,2IVu) which is - 1/R. The energy 
denominator for this perturbation must correspond to a ‘vertical’ transition for maxi- 
mum overlap of the 4, so it must be - K 2 .  Because at the minima of the lowest APES 
we have R2 K 2  the size of the correction is - l /K4. It should be noted that this is 
equivalent to the - l/k4 correction found in the ground state of E @ e (O’Brien and 
Pooler 1979). 

5. The low-lying energy levels 

It is interesting to begin by discussing the symmetry of equation (2.1) in order to know 
how to label our states. The first two terms in (2.1) are invariant under any rotation 
in X ,  Y ,  2 space, i.e. any orthogonal transformation. A judicious choice of a change 
of the basis of the matrix can also produce a transformation of the matrix that is 
equivalent to an orthogonal transformation of X, Y ,  2, and this means that for every 
transformation (and its inverse) that can be done in these two different ways there is an 
operation under which the Hamiltonian is invariant, and the group of these operations 
is the symmetry group of the Hamiltonian. A little manipulation shows that, if we 
exclude transformations that simply multiply the electronic basis by a phase factor, 
then the group is just Td, the symmetry group of the regular tetrahedron, while if the 
electronic states are kept real but allowed to change sign, then the inversion is included 
and the group is oh. Since we are going to keep the electronic basis real but allow it 
to change sign, oh would appear to be the right group to use, but we shall see that 
keeping the overall wavefunction single-valued requires that the we use only irreps that 
are odd under inversion. 
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i o  2b 

Figure 2. ( a )  The mapping of the four minima onto the eight vertices of a cube, with the 
arrangement of the two copies (e.g. l a  and lb) of each. The numbering 1 + 4 is in the same 
order as the list (2.6).  ( b )  The paths made out of sections of great circles on the sphere and 
listed in (2.10)-(2.13) mapped onto the cube. The closed path is round a minimum and the 
open one round a degeneracy. ( c )  The path on the cube that corresponds to going twice 
tightly round the (-l,-l,-l) degeneracy. ( d )  The parts of the cube faces not used in the 
mapping. 

We choose a mapping that takes care of the various sign changes on the APES that 
were described in 92, and it puts each minimum on two opposite vertices of a cube, as 
shown in figure 2(a). 

Here the minima have been numbered 1 4 ,  and the two copies of each labelled a 
and b. This cube is in the space of the three-component basis vector that goes with 
the lowest APES. For instance the positions of l a  and l b  on the cubes at (1, 1 , l )  and 
(-1,-1,-1) correspond to these being the two possible bases for the first minimum 
listed in (2.6). (Normalising the bases would replace the cube with a unit sphere, but 
using a cube makes it easier to see the cubic symmetry.) Comparison of equations 
(2.10) and (2.11) identify the centres of the edges as the saddle points between the 
minima-again two copies of each; for instance (0,1,0) on the sphere in figure 1. goes 
to (l,O, 1) as well as to (-l,O,-l) on the cube. Any path on the sphere in figure 1 
can be mapped onto the cube. The great circle on the sphere lying in the z = 0 plane 
(equations (2.8) and (2.9) corresponds to the two circles x2 + y 2  = 1 on the cube faces 
z = +1, and accordingly the paths in (2.10)-(2.13) are as shown in figure 2(b). A path 
on the lowest APES that goes tightly round the [-1,-1, -11 degeneracy maps onto the 
intersection of the plane x + y + z = 0 with the cube faces, as shown in figure 2(c). 
Putting in all the tight paths round degeneracies as in figure 2(d) shows that a centre 
square of each cube face is missing from the mapping. 

This cubic representation can be used to keep track of the continuity of the 
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basis states as we move over the lowest APES. Clearly the vibrational wavefunction 
representing motion on the APES must change sign under inversion on the cube to 
preserve the overall invarience, so we must classify eigenstates by odd irreps of Oh. 
The lowest energy levels must have energies that are only slightly higher than the 
minimum energy on the APES, and that means that they must nearly consist of a linear 
combination of lowest harmonic oscillator states at the minima. This concentration of 
wavefunctions near the minima is what makes this mapping of the minima a useful 
one. These wavefunctions can be classified like CT bonds at the vertices of a cube, and 
these odd rs bond combinations are as shown in figure 3. 

t€ €8 

T l W  

Figure 3. The symmetry-adapted linear combinations of U bonds at the vertices of a cube 
that are odd under inversion. 

Accordingly we write down as our ground-state wavefunctions: 
1 

[ 4 ( W  + 4 ( 2 4  + 4434 + 4 ( 4 4  - 4Ub) - 4(2W - 4(3b) - 4(4b)l 
4A2 = JK-m 

(5.1) 
1 

4 T l V  = ~ [+(la) + m a )  - 4 ( 3 4  - 4 ( 4 4  - 4 ( w  - ~ b )  + 4 4 3 ~  + 4(4b)i JslFss 
and so on for TI, and TI,, where S is the overlap between neighbouring harmonic 
oscillator wavefunctions, taken positive, and neighbouring means neighbouring on the 
cube. The states (5.1) are substituted into (4.3) to give an estimate of the ground-state 
energies. 

As is well known the effective potential near any minimum on the lowest APES is 
ellipsoidal, that is to say that if we move the origin of coordinates to the minimum at 

x = y = z = -  : K  
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and define new coordinates with Z ’  in the (1,1,1) direction, then 

V = i R 2  + KRE. z - $ K 2  + i2’2 + : ( X ”  + Y12). 

This results in an ellipsoidal form for the lowest harmonic oscillator wavefunction 

5.2) 

but 
it is still relatively simple to obtain the overlaps S. Allowing for the different axes of 
the different minima we find that 

3 8 
= [5(1 + m)]1/2 (-6+ 3\/jJzK2) (5.3) 

The energies of the A, and TI, ground states will depend only on two matrix elements, 
3 1 1  and H12, where H11 is the expectation of 2 in any one of the states like +(la) 
and X12 is a cross term such as (+(la)lHlr#~(2b)). In terms of these two matrix elements 
the energies are given by 

(5.4) 
ETi = ( 8 x 1 1  + 8312)/(8 + 8s). 

Now taking for A? the operator from (4.3): 

H = - i V 2  2 - i (uJV2u)  + ( i R 2  + K i R )  ( 5 . 5 )  

we find H1l = Eo + O(l/K2),  where Eo is the energy of the lowest harmonic oscillator 
state in a minimum. Terms of order 1/K2 come from the (ulv’u) part of 2 as well as 
from the anharmonic part of the potential. Clearly if the overlap S can be neglected 
we have 

(5.6) E A  = ET, = Eo + O(l/K2).  

Similarly we find 3 1 2  = S(E0 - A + O(l/K2)) ,  where A is the difference between the 
harmonic potential and the actual potential at the point of maximum overlap of the 
wavefunctions. This point is at R = 0.760K along a cube axis, and looking at the 
difference of potentials at that point we find that 

A = 0.189K2. (5.7) 

Putting this together gives 

E A  - ETi = 4AS + o ( l / K 2 ) S  = 1 . 1 3 E ~ ~  exp(- l .%E~~) .  (5.8) 

This value of the exponent in the tunnelling splitting agrees with Bersuker and Polinger 
(1989), Judd (1988) and others; there is more difference of opinion on the value of the 
prefactor !. 

As pointed out in the appendix this estimate of the tunnelling splitting is likely to 
be a good deal too small, and one based on a tunnelling integral would be preferable, 
as discussed in the appendix. In this (T 8 72g) case the appropriate way of writing 
equation (A36) would be 

(5.9) 
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because in the kinetic energy term the K represents the value of R at which we are 
working, and in the potential energy the K 2  represents the difference between the 
minimum and saddle-point energies. All energies are measured in units of fiw as in 
(2.1). Following through the rest of the argument from (A36) to (A45) we find a 
tunnelling splitting of the form 

E A  - E T ,  = constant x K exp(-11K2) (5.10) 

but to find the actual form of V e ~ ( $ )  and hence the integrals 11 and 1 2  would require 
a lot more work. 

6. Conclusion 

We have studied the phase changes on the lowest APES for the T 8 ~2 system, and 
as a result have suggested a somewhat more complicated ground state (5.1) than the 
one that has traditionally been used. With this ground state we get an expression for 
the tunnelling splitting in the harmonic oscillator approximation that is very similar to 
previous estimates. However, in the course of doing this study we realised that a better 
estimate of tunnelling splitting could be made by using a better initial wavefunction. 
This idea is followed up in the appendix, where it is worked out in detail for a one- 
dimensional problem, where the results can be tested numerically. The success of this 
test suggests that this is, so far, the best way of calculating this splitting, and that 
it ought to be used in higher-dimensional problems such as T 8 72 if the effective 
potential could be calculated. 
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Appendix A note on tunnelling in Jahn-Teller systems 

A typical Jahn-Teller system at strong coupling would have a lowest APES with several 
equivalent minima, and a set of ground states that were linear combinations of states 
in these wells, the combination being dictated by symmetry. The problem is to calculate 
the splitting of these ground states, which is called the tunnelling splitting because it 
arises from the interaction between states in various wells through the potential barrier 
between them. 

In this approximation the tunnelling splitting depends on the choice of ground- 
state wavefunction in each well, and the obvious wave function to choose is the lowest 
harmonic oscillator state in a parabolic well that fits the actual curvature of the APES at 
a minimum. Making this assumption, and defining S to be the overlap integral between 
states y1,yz in neighbouring wells, and 3 1 2  to be y 1 3 y 2 d 5 ,  it can be shown as in 
$5 that 

X12 = S(Eo - A )  (All 



1790 M C M O'Brien 

to first order in S .  Here EO is the ground-state energy with zero overlap, and A 
(normally positive) is the difference between the harmonic oscillator potential and the 
adiabatic potential at the point of maximum overlap. The tunnelling splitting is then 
some multiple of AS. This splitting is dominated by the negative exponential in S: 
in most Jahn-Teller systems the distance between two minima scales ifs the coupling 
constant, K, and the height of the barrier scales as K2, so that S ci exp(-cK2) and 
A a  K2. 

A l .  A simple one-dimensional example 

A direct numerical test of this approach can be made for the equation 

which appears in the E 8 E Jahn-Teller Hamiltonian in very strong coupling with 
warping. Englman (1972, equation (3.28)) gives an expression for the tunnelling 
splitting that is based on this approach. His result can be compared with the result of 
solving the equation numerically by matrix diagonalisation, and this comparison shows 
that the predicted tunnelling splittings are too small by orders of magnitude when the 
coupling is really strong. 

It is clear that what has gone wrong is the choice of wavefunction in the overlap 
region. Because the barrier is lower than the harmonic oscillator potential, the wave- 
function penetrates more, and the index c is smaller. We should therefore look for 
a wave function that is as correct as possible in the barrier region, and for this we 
can use the WKB approximation. The WKB approach has been used by Polinger(l974) 
(see also Bersuker and Polinger (1989)) but he uses a different method which produces 
slightly different numbers, so it seems worth setting out the present calculation in full. 

Assume for simplicity that each well is symmetrical, that one is centred at x = 0 
and the neighbouring one at x = d.  We also assume that the equations have been 
scaled so that V(x) z :x2 near x = 0 and the kinetic energy is -;d2/dx2. The lowest 
harmonic oscillator state is 

and its energy, E ,  is i. This wavefunction extends into the barrier where it is matched 
by the WKB wavefunction 

by a suitable choice of the constant, C. The lower limit of the integral is taken as the 
point where V = E for convenience, and this is the definition of a. Assume that there 
is an interval a < x < b in which the approximation V = i x2  holds (as shown in figure 
4), and work out : 

- Jy[2( V - dx = - l x ( x 2  - 1)'12 dx 

= -ix(x2 - 1) '  ' + ln[x + (x2 - 1)"*] (AS) 2 
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t 

l a  
X 

b d 

Figure 4. The adiabatic potential, showing the labelling used in the text. 

so 

and when x 5> 1 

Thus to match w1 to vo we must choose C so that 

114 

w1= (&) (V  - ~ ) - ' / 4 e x p  (- lx [2( V - E)] ' I 2  dx) . 

This wavefunction can be used through the barrier, but must be matched by one that 
remains finite and integrable through the well centred on x = d .  To do this conveniently 
we choose 1p2 = Aexp[-E.(x - d + b)] and do  the matching at x = d - b. Now in the 
region in which the WKB approximation holds we have w i / w l  = -[2(V - E ) ] ' 1 2 ,  while 
4/w2 = -i.. Thus 

('49) 2 I / ?  E. = [2(V - E)]"2/,,d-h = (6 - 1) 2 b. 

For the amplitude A we need the amplitude of I ~ I  at x = d - b. This can be written 

I I 4  

( V  (b )  - exp (- LdPa [2( V - E)] ' I 2  dx 

From this we can pick out the important tunnelling integral, and write it 

IT  = Ld-u(2(V - E ) ] '  dx 
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and using the same approximation as before (b  % 1) we get 

so that 

So far then we have got a wavefunction 

tpo in - b < x < b  

1p2 in x > ( d - b )  
V I  in b < x < ( d - b )  

with y(-x) = ~ ( x ) .  
In what follows we work to first order in exp(-lT) and reject any higher-order 

terms-for instance in the normalisation, W O  is approximately normalised to 1, while 
J w: dx goes as exp(-2I~), so the whole wavefunction (A14) is assumed normalised to 
1 .  

The next step is to consider Xw: we have &WO = Ewe, X w l  = EwI but Xw2 = 
(-i2/2 + V)w2. Now we overlap X y  with an exactly similar state centred on x = d, 
and get to this approximation 

where SI is the overlap between the two 1p1 parts of the wavefunctions, which is also 
equal to S ,  the total overlap between states centred on different wells. to this order. 
We then have 

x exp[-i(x - d)’ - b(x - d)  - ib2  - IT - i] dx + E S .  (A 16) 

To do this integral, put x - d + b = y and get 

and in the limit when b B 1 only one term survives and we get 
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The only other integral of the same order is the overlap integral, S, which also goes 
as exp(-IT). This result does not depend on the detailed choice of 1p2, but only on its 
general form and boundary conditions. 

We can now use these results to find the tunnelling splitting for equation (A2) in 
the Jahn-Teller case where the range is (0,47c). The states are A and E, and the A state 
can be written 

w6)  (A 19) 

where vi is centred at 4 = 27ci/3. Then 

and similarly 

so in this approximation the tunnelling splitting, denoted 3r, is given by 

3 r  = - 3 2 1 2  + 3ES. (‘422) 

This differs from Polinger’s (1974) equation (10) by the factor ( n / e ) I l 2 .  

zero, write (A2) as 
To use this formula we need a change of variable in equation (A2). To adjust the 

[-d2/w2 + m -COS 3 4 ) 1 ~ ( 4 )  =  EX(^) (‘423) 

so that near d = 0 we have 

(-d2/d42 + ;fi4‘)x = E X  (‘424) 

and then put x = (:/91/44 to get the equation for small x in the form 

1 d2 1 E 

The complete x equation is then 

Consequently we can use result (A18) with 

V(x) = - 
6 

and the final energy multiplied by 3(2p)1/2. The tunnelling integral is 

IT = Ld-‘(i(2/?)1i2{1 - ~ 0 ~ [ 3 ~ ( 2 / 9 8 ) ~ ’ ~ ] }  - 1)’”dx 

(‘427) 
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To evaluate this integral put 

e = EX 

where E' = (9/8j3)'I2 and get 

1 n--E 

E 2  
IT = - l (sin2 0 - E ' )  de. 6430) 

To get an asymptotic approximation for this integral we divide it into two parts: 

where the approximation in the first integral requires Eb 4 1. This first integral can 
now be evaluated exactly, giving 

f l L b ( O 2  - E2)'12de = bib2 - 1)1/2 - ln[b + (b2 - 1) ' /2] .  (A321 

For the second integral in IT we expand in powers of E /  sin 8 to get 

(sin2 0 - c2) dB = 

Eh 

2 
E 2  

- c-- b2 +In ( f )  iA33) 

and this approximation requires 
condition b >> 1 we finally get 

b % 1. Putting these results together and using the 

(A341 

We now use this result, together with (A18), (A22), (A29) and the fact that the final 
energy is multiplied by 3(2P)'12, to predict that 

L 
IT = - + l n c -  - 1 n 4 . . . .  

E 2  

ln(3r) = - $ ( 2 P ) ' ~ 2 + ~ l n p + l n 3 6 - l n ( 3 7 c ) ' / 2 +  :In2 

= - 1 . 8 8 6 a +  :lnP+2.635. (A35) 

The tunnelling splittings calculated by matrix diagonalisation of equation (A23) appear 
to fit to an equation 

ln(3r) = -1.88J/7+ l n p  f 2 . 6  

which is in as good agreement as the numerical results permit. 
Polinger has revised his calculation of the tunnelling integral since his 1974 paper, 

and the result is given as equation (3.104) in the new book by Bersuker and Polinger 
(1989). His result in our notation is 

ln(3r)  = -$(2P)'/' + : In P + 2.028 
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so we are in very good agreement, the difference following mainly from a slightly 
different estimate of the tunnelling integral. 

These expressions are to be compared with the result of using the approximation in 
(Al) ,  or equivalently that of Englman (1972, equation (3.28)) which gives to the same 
order in p 

= -2.33fi  + In p + 2.18. (A361 

If, in (A2) x # 0, then in all these expressions we must replace p by P / x  and multiply 
3 r  by x .  

The main difference between the results (A35) and (A36), arising from the difference 
in the amount of wavefunction that tunnels through, is in the coefficient of d, which 
leads to a very large difference in the predicted 3 r  at strong coupling. I t  should be 
noticed that both approximations give the same sign for 3 r ,  corresponding to the state 
of lowest energy having the largest wave function in the tunnelling region. A general 
proof that the doublet is lowest for this particular equation is given by Ham (1987), 
but it is worth noticing that a consideration of the relationship between the curvature 
of the wavefunction and the energy also leads to this conclusion, which is thus rather 
general. 

A2.  Generalisation to  other potentials 

This calculation was done for a particularly simple potential function, but it can be 
generalised as long as the type of scaling is preserved. Consider the equation 

where V ( + )  2 i42 for small 4 and V ( 4 )  has a peak value of order one between similar 
minima. ( p  in (A23) has been replaced by K4 for ease of typesetting). As before we 
make a change of variable, x = K4,  and look at 

We define a, b, d as before (and again have a = 1) and write 

IT = Ld- ' (2K2V(x/K)  - 1)'12 dx. 

As before this is split into two to give 
d,'2 

(x' - 1)'l2 dx + 2 L (2K2V(x/K) - 1)'12 dx. ('440) 

The first integral we already have, [b2 - 
expand in powers of 1/K to get 

- ln(2b)], and for the second integral we 

d,'2 
2 (2K2 V(x/K) - 1)' ' dx 

1 d/2  
= 2 (2K2V(x/K))'" dx - 
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Now 

d l 2  
2 1 (2K2V(x/K))I”dx 

d/ 2 
= 2 J (2K2V(x/K))‘’2dx - 2 (2K2V(x/K))’/’dx 

(2K2V(4))’12Kd4-2 

These integrals are well behaved at r / I  = 0, so we can put 1/K in the lower limit as zero, 
and notice that d/K is an angle, e d  say, which does not depend on /?. Consequently 
this integral is 

O d / 2  
2K2 (2V(r/I))’”dr/I - b2 + 1 = K211 - b2 + 1. (‘443) 

On the other hand the second integral in (A41) is singular near x = 0, where it goes as 
dx/x = d 4 / 4  so we write 

The first integral is now well behaved, and we take the lower limit as zero and get for 
this integral 

12 - ln(Bd/2) + In b - In K (A45) 

and putting all these together we have 

In any actual case 11 and 12 could be calculated numerically. 

A 3 .  Application to higher dimensions 

Most of the interesting Jahn-Teller systems have APES in several dimensions, and the 
procedure must be modified to handle them. Typically the lowest APES has a number of 
minima, and at strong coupling the wavefunction is concentrated in these minima. The 
eigenfunctions are linear combinations of these local wavefunctions, with the choice 
of linear combination dictated by symmetry, and the splitting of the ground states 
depends on the extent to *.vhich the wavefunction tunnels through from one minimum 
to another. The approximation in which each local state is a harmonic oscillator state, 
giving rise to the result (Al), can be used in any number of dimensions and gives an 
unambiguous value for the splitting as long as care is taken to choose an appropriate 
geometry and in performing the integrals. However, as in the one-dimensional case, 
this approximation will underestimate the degree of penetration of the wavefunctions, 
and hence will underestimate the splitting. 

We can attempt to adapt the one-dimensional method developed here by first 
noticing that it is most important to get a good estimate of the wavefunction in 
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the region of the saddle point between two minima, or where the amplitude of the 
wavefunction should be largest on any path from one minimum to a neighbour. We 
can identify such a path such that at every point on it the potential energy increases 
in all directions normal to the path. We can then take a wavefunction that separates 
into harmonic oscillator wavefunctions in all the directions perpendicular to the path, 
and satisfies an equation like (A37) where is a parameter for distance along the 
path. The V ( 4 )  to be used here will not be only the actual potential energy; it will 
contain a factor relating path distance to 4, as well as a contribution arising because 
the curvature of the potential perpendicular to the path may vary along the path. 
When both these effects are allowed for it should be possible to find an effective V ( 4 )  
to go in (A37) that is at least approximately correct at large K .  

We conclude then that an expression of the form (A46) should still hold for the 
tunnelling integral, and that the expression (A18) for X12 should be a considerably 
better approximation than (Al).  
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